On the Domination Numbers of Certain Prism Graphs

نویسندگان

چکیده

A dominating set S of a graph , is subset the vertex V (G) such that any not in adjacent to at least one .The domination number G denoted by minimum size sets G. In this paper we introduced numbers certain prism graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The minus k-domination numbers in graphs

For any integer  ‎, ‎a minus  k-dominating function is a‎function  f‎ : ‎V (G)  {-1,0‎, ‎1} satisfying w) for every  vertex v, ‎where N(v) ={u V(G) | uv  E(G)}  and N[v] =N(v)cup {v}. ‎The minimum of ‎the values of  v)‎, ‎taken over all minus‎k-dominating functions f,‎ is called the minus k-domination‎number and is denoted by $gamma_k^-(G)$ ‎. ‎In this paper‎, ‎we ‎introduce the study of minu...

متن کامل

Total $k$-Rainbow domination numbers in graphs

Let $kgeq 1$ be an integer, and let $G$ be a graph. A {it$k$-rainbow dominating function} (or a {it $k$-RDF}) of $G$ is afunction $f$ from the vertex set $V(G)$ to the family of all subsetsof ${1,2,ldots ,k}$ such that for every $vin V(G)$ with$f(v)=emptyset $, the condition $bigcup_{uinN_{G}(v)}f(u)={1,2,ldots,k}$ is fulfilled, where $N_{G}(v)$ isthe open neighborhood of $v$. The {it weight} o...

متن کامل

On certain graph domination numbers and applications

In this paper we compute for paths and cycles certain graph domination invariants like locating domination number, differentiating domination number, global alliance number etc., We also do some comparison analysis of certain parameters defined by combining the domination measures and the second smallest eigen value of the Laplacian matrix of all connected graphs of order 4.While discussing app...

متن کامل

the minus k-domination numbers in graphs

‎for any integer $kge 1$‎, ‎a minus $k$-dominating function is a‎ ‎function $f‎ : ‎v (g)rightarrow {-1,0‎, ‎1}$ satisfying $sum_{win‎‎n[v]} f(w)ge k$ for every $vin v(g)$‎, ‎where $n(v) ={u in‎‎v(g)mid uvin e(g)}$ and $n[v] =n(v)cup {v}$‎. ‎the minimum of‎‎the values of $sum_{vin v(g)}f(v)$‎, ‎taken over all minus‎‎$k$-dominating functions $f$‎, ‎is called the minus $k$-domination‎‎number and i...

متن کامل

A note on domination and independence-domination numbers of graphs∗

Vizing’s conjecture is true for graphs G satisfying γ(G) = γ(G), where γ(G) is the domination number of a graph G and γ(G) is the independence-domination number of G, that is, the maximum, over all independent sets I in G, of the minimum number of vertices needed to dominate I . The equality γ(G) = γ(G) is known to hold for all chordal graphs and for chordless cycles of length 0 (mod 3). We pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ma?alla? Tikr?t li-l-?ul?m al-?irfa?

سال: 2022

ISSN: ['2415-1726', '1813-1662']

DOI: https://doi.org/10.25130/tjps.v27i1.85